ECON-ZIP-BASE

Technical Data

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Description</th>
<th>Electrical Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>R</td>
<td>Supply Hot</td>
<td>24 VAC, ± 20%, 50/60Hz</td>
</tr>
<tr>
<td>Input</td>
<td>G</td>
<td>Fan Signal (occupied)</td>
<td>On/Off, 24 VAC, ± 20%, 50/60Hz</td>
</tr>
<tr>
<td>Input</td>
<td>C</td>
<td>Supply Common</td>
<td>Common</td>
</tr>
<tr>
<td>Input</td>
<td>Y1</td>
<td>Cooling requirement Stage 1</td>
<td>On/Off, 24 VAC, ± 20%, 50/60Hz</td>
</tr>
<tr>
<td>Input</td>
<td>Y2</td>
<td>Cooling requirement Stage 2</td>
<td>On/Off, 24 VAC, ± 20%, 50/60Hz</td>
</tr>
<tr>
<td>Input</td>
<td>W1</td>
<td>Heating requirement Stage 1</td>
<td>On/Off, 24 VAC, ± 20%, 50/60Hz</td>
</tr>
<tr>
<td>Input</td>
<td>SAT ±</td>
<td>Supply Air Temperature Sensor</td>
<td>Type: 10K NTC (Type II thermistor)</td>
</tr>
<tr>
<td>Input</td>
<td>OAT ±</td>
<td>Outdoor Air Temperature</td>
<td>Type: 10K NTC (Type II thermistor)</td>
</tr>
<tr>
<td>Input</td>
<td>OAH ±</td>
<td>Outdoor Air Humidity</td>
<td>Auto Detection: Sensor present if voltage 0.5V-10V</td>
</tr>
<tr>
<td>Input</td>
<td>RAT ±</td>
<td>Return Air Temperature</td>
<td>Type: 10K NTC (Type II thermistor)</td>
</tr>
<tr>
<td>Input</td>
<td>RAH ±</td>
<td>Return Air Humidity</td>
<td>Auto Detection: Sensor present if voltage 0.5V-10V</td>
</tr>
<tr>
<td>Output</td>
<td>CC1</td>
<td>Compressor 1 RTU Stage 1 Mechanical Cooling Circuitry</td>
<td>100 000 cycles @ inrush current of 3A, normal current 1.5A Impedance for Auto detection @ 24 V: <600 Ω @ 60Hz <800 Ω @ 50Hz</td>
</tr>
<tr>
<td>Output</td>
<td>CC2</td>
<td>Compressor 2 RTU Stage 2 Mechanical Cooling Circuitry</td>
<td>100 000 cycles @ inrush current of 3A, normal current 1.5A Impedance for Auto detection @ 24 V: <600 Ω @ 60Hz <800 Ω @ 50Hz</td>
</tr>
<tr>
<td>Output</td>
<td>Act 1</td>
<td>Actuator supply common</td>
<td>Common</td>
</tr>
<tr>
<td>Output</td>
<td>Act 2</td>
<td>Actuator supply hot</td>
<td>24 VAC, 50/60Hz</td>
</tr>
<tr>
<td>Output</td>
<td>Act 3</td>
<td>Actuator control output</td>
<td>2-10 VDC</td>
</tr>
<tr>
<td>Input</td>
<td>Act 5</td>
<td>Actuator feedback signal</td>
<td>2-10 VDC</td>
</tr>
</tbody>
</table>

Installation

You can mount the ZIP Economizer in any orientation; it is recommended that you mount it in a position that will allow full utilization of the LCD and key pad and proper clearance for installation, servicing, wiring, and removal.

Take the overall dimensions of 6.63" [168.5] x 7.12" [181] x 2" [50.8] and mount in the interior of the RTU in a convenient location that you can access. Secure the ZIP utilizing #8 self-tapping screws (included). A minimum of two tabs need to be secured, one which is a top tab. Ideally secure all four tabs. Wire the electrical connection using ¼" female insulated spade connectors to prevent corrosion.

Dimensions in Inches (mm)

- Actuator and Circuit Dimensions: 5.64" [143.2] x 2.35" [59.7] x 2.25" [57.2]
Differential Dry Bulb

Actuators Hot wire must be connected to the control board common.
Actuators may be controlled in parallel. Current draw and input impedance must be observed.
Power source should be the same as ECON-ZIP-BASE.
When the thermostat is not equipped with occupancy control, "Fan On" output "G" shall be wired to the ECON-ZIP-BASE.
W1 must be wired to ECON-ZIP-BASE when unit is a Heat Pump, using 2 speed fan (VFD), and/or when it is desired to record operational hours in heating.
Existing refrigeration safety devices may exist, consult RTU wiring diagram.

Differential Enthalpy

Actuators Hot wire must be connected to the control board common.
Actuators may be controlled in parallel. Current draw and input impedance must be observed.
Power source should be the same as ECON-ZIP-BASE.
When the thermostat is not equipped with occupancy control, "Fan On" output "G" shall be wired to the ECON-ZIP-BASE.
W1 must be wired to ECON-ZIP-BASE when unit is a Heat Pump, using 2 speed fan (VFD), and/or when it is desired to record operational hours in heating.
Existing refrigeration safety devices may exist, consult RTU wiring diagram.
WARNING Live Electrical Components!

During installation, testing, servicing and troubleshooting of this product, it may be necessary to work with live electrical components. Have a qualified licensed electrician or other individual who has been properly trained in handling live electrical components perform these tasks. Failure to follow all electrical safety precautions when exposed to live electrical components could result in death or serious injury.

Settings

“Settings” is the menu displayed when the ZIP Economizer is first powered. Press “OK” to parameterize required settings. Reference above Keypad Key definition instructions and navigate as needed.

Functions

1. “Monitor Live Conditions” is used to display settings and live values.
2. “Settings” is used to parameterize the ZIP Economizer. Unless otherwise prompted; default entry is “Auto” or “Off”. (Note: Devices 1 is for CC1, CC2, EF, IF; Devices 2 is for OAH, RAH)
3. “Present Devices” is used to verify that the ZIP Economizer’s Auto Detected connections are terminated properly. If established I/O is not shown, verify wiring. If wiring has continuity and device is verified operational re-enter “Settings” and enable missing device by changing from “Auto” to “Available” or “Installed”.
4. “Alarms” is used to view current and historical alarms and delete inadvertently caused alarms.
5. “Service and Commissioning” submenu is used to operate the RTU in “Manual Mode” or to perform “Acceptance Test”. “Settings” must to be completed to access.
6. “Status” is a display of the current operating mode. It can be accessed by pressing “esc”. The action of pressing any key will drop the user down from Status to the next level, so repeatedly pressing “esc” will toggle the display between Status and Monitor Live Conditions. (Note: If status “Setup Incomplete” is displayed the RTU cooling operation will be disabled.)

Installation

1. Shut off power to RTU before beginning installation.
2. Note orientation, opening rotation, and spring return rotation of damper assembly. Mount Actuator to Outside Air and Return Damper assembly. To ensure tight outside air shutoff; while tightening actuator clamp push damper closed.
3. Terminate required Inputs and Outputs(I/O): For the ZIP Economizer to function correctly, the following I/O, at a minimum, are required to be terminated, wired, and functioning (R, G, Y1, Y2, G, CC1, OAT, SAT, ACT1, ACT2, ACT3, ACT5). See diagram above.

MMI Keypad

Moves up through the menu on the same level. Will increase values by one increment at a time. When setting values holding key down will fast scroll.

Moves down through the menu on the same level. Will decrease values by one increment at a time. When setting values holding key down will fast scroll.

Enter sub menu level. Start editing a setting. Store an entered value.

Escape sub menu to next higher level. Cancel current actions.

Show additional information on the current menu item when “I” appears in lower right of display.
QUICK SETUP

ZIP Economizer Base Module

Required "Settings" Parameters for All Configurations

Note: you may enter parameters in any order - eg: Vent min Pos before ZIP Code. - If the RTU is a heat pump or uses a 2 speed indoor fan, these parameters should be enabled first, otherwise the logic may go to Setup Complete prematurely.

1. ZIP Code US or Canada (sets the free cooling changeover high limit and temperature units F/C)
 a. When the Zip Code submenu is displayed enter “OK” to begin “US” Zip Code parameterization. If “Canada” Postal Code is desired press the up/down arrow to access.
 i. Press OK to access digit 1 (flashing) then use the up/down arrow to parameterize; enter OK when complete. Repeat until all digits are complete. If a mistake is made press “esc” and repeat from beginning

 US
 89436

 ii. When all Zip Code or Postal Code digits are parameterized press “esc” to move up a level then press the up/down arrow to access next settings parameter.

2. Vent Min Pos (Outdoor Air Damper Ventilation Minimum Position)
 a. When the “Vent Min Pos” submenu is displayed press “OK” to parameterize (flashing).
 b. Use the up/down arrow to parameterize, press “OK” when complete.
 The actuator will immediately drive the damper to the minimum position.

3. Additional Parameters may require setting. The ZIP Economizer will auto-detect added Devices such as a CO2 sensor etc. When the ZIP Economizer detects a new device, it will prompt the user in the Status level; navigate to Settings and parameterize blank fields. If the devices are connected upon first start up their settings will require parameterization then.

4. When all parameters have been set, the ZIP Economizer will show “Setup Complete” if there are still parameters to set, there will be no action. You can verify by pushing esc until status level is reached and it will display “Setup Incomplete”. If this is the case, re-enter settings menu and use up down arrows to find the parameter with blank fields and parameterize as described above.

Setup Complete - Initializing Automatic Mode

1. When all entries have been completed, the ZIP Economizer will switch to Status display and show “Setup Complete”, and will immediately show a “Damper scaling starts in 10secs” and will countdown to 0 (be aware, at 0 the damper will start to move at high speed). A message will scroll saying “Damper scaling for better operation if obstruction is present rescale damper in commissioning menu”. (For detailed instructions on this – please see the section “Service and Commissioning” below. This will open damper to 100% (re-scale control signal if needed). (Note: failure to identify obstructions or improper setup of damper assembly may result in an improper scaling and operation of the damper.)

 Once scaling is complete, a message will appear saying “Damper scaling successful”. The ZIP will then show “maximum at 80° = 100%” That message will show maximum rotation of the damper. This process ensures the damper is always operating and displayed from 0-100%.

 2. Once the message has appeared, the actuator immediately closes the damper and a countdown begins, until the unit starts to operate in Automatic Mode (be aware, when countdown complete, the RTU will respond to thermostat calls which may enable mechanical cooling).

Service and Commissioning (Acceptance Test & Manual Mode)

1. The ZIP Economizer has built in commissioning processes found in Acceptance Test. Use “Economizer Test” to verify RTU Integrated Economizer operation and also if it is known that the actuator stroke is mechanically limited to less than 90 degree rotation. The test will re-scale the control signal range to maximum resolution (0-100%) over the calibrated (reduced) angle.
 a. Navigate to the “Service and Commissioning” menu, press “OK”; press the down arrow to access “Acceptance Test”. Press OK again when “Economizer Test” appears. Press “OK” again to confirm running test. Follow prompts during test. This test will open damper to 100% (re-scale control signal if needed), enable power exhaust fan (if connected), enable 1st stage of Mechanical Cooling, reverse this process and then drive to Vent Min Position. When used with a Belimo actuator, the actuator will speed up to reduce test time. (Note: failure to identify obstructions or improper setup of damper assembly may result in an improper scaling and operation of the damper.)
 b. This can be done by pressing “OK”... displayed or is automatically done after 8hrs has passed.

2. Manual Mode is used to override outputs after entering a “Timeout” duration.

Belimo Americas

USA, Latin America, and the Caribbean: www.belimo.us
Canada: www.belimo.ca
Brazil: www.belimo.com.br

Belimo Worldwide: www.belimo.com