HT24
Heating Device with Adjustable Thermostat

Installation Options
Actuators
- Torque 8 Nm
 - NMB24-3-T N4H
 - NMB24-SR-T N4H
 - NMX24-MFT-T N4H

- Torque 18 Nm
 - AMB24-3-T N4H
 - NMB24-SR-T N4H
 - AMX24-MFT-T N4H

Electrical Installation

Wiring diagram with actuator types ..-3

Legend:
- M = actuator
- T (°C) = Thermostat
- H = Heating

Examples of external wiring with actuator types ..-3 with switch

Note
The following points must be taken into account with independent, external wiring:
- All contact between the cables or wires that are introduced and the heating element is to be avoided.
- Where necessary, use cables with sufficient numbers of wires, e.g. so that the heating and the actuator can be supplied separately with voltage.

General Information

Protection: NEMA 4X, UL Type 4X, IP66 & IP67

UV protected housing

Weather-tight and corrosion resistant for the harshest indoor and outdoor conditions
Heating with the adjustable thermostat to preclude insufficient temperatures and the formation of condensation water in BELIMO NEMA 4X actuators with nominal voltage AC 24 V

- Thermostat adjustable (+14 °C to +122°F)
- Utilization range -40°F to +122°F

Application

The thermostat records the temperature in the actuator housing and switches the connected heating system on when the temperature falls below the one that has been set. This prevents the formation of condensation on assemblies and electronic components, even in the presence of frequent and severe temperature fluctuations. The heating elements is designed for continuous operation.

Technical Data

- **Range:** +14...122°F (factory setting 86°F)
- **Switching differential (temperature):** 7 K (±4 K tolerance)
- **Sensor element:** Thermobimetal parts
- **Type of contact:** NC contact
- **Contact junction resistance:** <10 mΩ
- **Service life:** >100,000 cycles
- **Connection:** 2-pole terminal, torque max. 0.5 Nm:
 - Rigid wire line 2.5 mm²
 - Strand line with wire end ferrule 1.5 mm²
- **Heating output:** 20 W
- **Switch-on current:** max. 6 A
- **Nominal voltage:** AC/DC 24 V
- **Heating element:** Positive temperature coefficient resistor (PTC), self-regulating, temperature-limiting
- **Heater:** Aluminium profile, anodised
- **EMC:** Accordance with EN 55014-1-2, EN 61000-3-2 and EN 61000-3-3
- **Ambient temperature:** -40 °C to +122°F
- **Non-operating temperature:** -40 °C to +158°F

Safety Notes

It is absolutely imperative that operators ensure that both, heating device and actuator, are disconnected from the voltage source before settings or manipulations are carried out on the device.

- The thermostat can be removed by trained personnel when repair work is being performed.
- The heating device itself is not permitted to be removed. The entire actuator must be replaced when repair or warranty work is being performed!
- The self-regulating function of the PTC heating element is not a substitute for the utilisation of the installed thermostat!
- The thermostat is not permitted to be set at ≥ 90°F in the presence of ambient temperatures of ≤ -4°F.
- The following points must be taken into account with independent, external wiring:
 - All contact between the cables or wires that are introduced and the heating element is to be avoided.
 - Where necessary, use cables with sufficient numbers of wires, e.g. so that the heating and the actuator can be supplied separately with voltage (see «Electrical Installation»).
 - All legal regulations or regulations issued by authorities must be observed.
- The thermostat is factory set 86°F. Set to your required setting.
Airside Product

<table>
<thead>
<tr>
<th>Airside Product</th>
<th>Torque (based on 4 in-lb per sq. ft)</th>
<th>Running Time</th>
<th>Power Supply</th>
<th>Power Consumption</th>
<th>Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMX24-MFT-T N4</td>
<td>70 in-lb (8 Nm)</td>
<td>95</td>
<td>5.5</td>
<td>3.5 (1.25)</td>
<td></td>
</tr>
<tr>
<td>AMX24-MFT-T N4</td>
<td>184 in-lb (21 Nm)</td>
<td>18</td>
<td>24 VAC, 200%</td>
<td>2 to 10 VDC (default)</td>
<td>0 to 10 VDC</td>
</tr>
</tbody>
</table>

Wiring

- **VDC/4-20 mA**
 - Blk (1) Common
 - Red (2) Hot
 - Wht (3) Y Input
 - Org (4) O Output, 2 to 10 VDC

- **PWM**
 - Blk (1) Common
 - Red (2) Hot
 - Wht (3) Y Input
 - Org (4) O Output

- **Floating Point**
 - Blk (1) Common
 - Red (2) Hot
 - Wht (3) Y Input
 - Org (5) O Output, 2 to 10 VDC

- **On/Off**
 - Blk (1) Common
 - Red (2) Hot
 - Wht (3) Y Input
 - Org (4) O Output

Wiring

1. **Disengage** the gear train with the manual override button and move the shaft from closed to open to closed. Stroking the damper from fully open to close, with 5° of actuator stroke left, ensures there is no binding.

2. **Turn the damper shaft until the blades are fully closed.**

3. **Slip the actuator's universal clamp over the damper shaft.** Make sure that the duct and the controls on the cover are accessible. Place the actuator in the desired mounting position.

4. **Loosen the nuts on the universal clamp.**

 - (1) Press the manual override button and rotate clamp about 5° from the closed position (1/16" to 1/8" between stop and clamp).
 - (2) Tighten the two nuts on the universal clamp with a 10 mm wrench. Do not over tighten.

5. **Remove cover by unscrewing the six screws.** Make adjustments to the CW/CCW switch if needed. Adjust end-stops if required. Wire the actuator as described.

Standard Mounting

1. Turn the damper shaft until the blades are fully closed.
2. (1) **Slip the actuator’s universal clamp over the damper shaft.** Make sure that the duct and the controls on the cover are accessible. Place the actuator in the desired mounting position.
 (2) Hand tighten the two nuts on the actuators universal clamp.
3. (1) **Disengage the actuator gear train by pressing the manual override button.** Using a Phillips screwdriver press down and turn 90 degrees to lock the override. Rotate the clamp until centered.
 (2) This can be done by inserting a screwdriver into the override component and manually moving the device clockwise or counter clockwise.
4. **Slide the anti-rotation bracket up under the actuator.** Bend the bracket as needed to support the rear of the actuator. Secure to duct work with self-tapping screws (No. 8 recommended).
5. **Loosen the nuts on the universal clamp.**
 - (1) Press the manual override button and rotate clamp about 5° from the closed position (1/16" to 1/8" between stop and clamp).
 - (2) Tighten the two nuts on the universal clamp with a 10 mm wrench. Do not over tighten.
6. **Install the cover.** The damper is now fully closed but the actuator is 5° from fully closed. This is called “pre-loading” the actuator. When the actuator is powered and sent to the closed position, it will put its full torque on the shaft compressing the edge and blade seals. This ensures that the damper will meet its leakage rating. The actuator is electronically protected from overload and will not be damaged.

Testing the installation without power

1. Disengage the gear train with the manual override button and move the shaft from closed to open to closed. Stroking the damper from fully open to close, with 5° of actuator stroke left, ensures there is no binding.
2. Correct any problems and reset.
Wiring
On/Off, Floating Point

<table>
<thead>
<tr>
<th>Airside Product</th>
<th>Torque (based on 4 in-lb per sq. ft)</th>
<th>Running Time</th>
<th>Power Supply</th>
<th>Power Consumption</th>
<th>Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMB24-3-T N4</td>
<td>70 in-lb [8 Nm], Approx. 16 sq. ft.</td>
<td>95</td>
<td>4</td>
<td>2 (0.2) add-on</td>
<td></td>
</tr>
<tr>
<td>AMB24-3-T N4</td>
<td>160 in-lb [18 Nm], Approx. 40 sq. ft.</td>
<td>95</td>
<td>5.5</td>
<td>2.5 (0.2) add-on</td>
<td></td>
</tr>
</tbody>
</table>

Motor Drive (Default)
24 VDC ±20%, 24 Volt
VA Rating
Wattage running (holding)
Position Feedback

Airside Product
NMB24-SR-T N4
AMB24-SR-T N4

Floating Point or On/Off control

Notes:
- Provide overload protection and disconnect as required.
- Actuators may also be powered by 24 VDC for a 24V power supply.
- Meets cULus requirements without the need of an electrical ground connection.

Wiring
2 to 10 VDC

<table>
<thead>
<tr>
<th>Airside Product</th>
<th>Torque (based on 4 in-lb per sq. ft)</th>
<th>Running Time</th>
<th>Power Supply</th>
<th>Power Consumption</th>
<th>Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMB24-SR-T N4</td>
<td>70 in-lb [8 Nm], Approx. 16 sq. ft.</td>
<td>95</td>
<td>5</td>
<td>2.5 (0.4)</td>
<td></td>
</tr>
<tr>
<td>AMB24-SR-T N4</td>
<td>160 in-lb [18 Nm], Approx. 40 sq. ft.</td>
<td>95</td>
<td>5</td>
<td>2.5 (0.4)</td>
<td></td>
</tr>
</tbody>
</table>

Motor Drive (Default)
24 VDC ±20%, 24 Volt
VA Rating
Wattage running (holding)
Position Feedback

Wiring

- Provide overload protection and disconnect as required.
- Actuators may be connected in parallel. Power consumption and input impedance must be observed.
- Actuators may also be powered by 24 VDC.
- The ZG-R01 500 Ω resistor converts the 4 to 20 mA control signal to 2 to 10 VDC, up to 2 actuators may be connected in parallel.
- Only connect common to neg. (−) leg of control circuits.